

Vol. 3, No. 05 Sep-Oct; 2021

LITERATURE REVIEW OF BLOCKCHAIN TECHNOLOGY AND ITS IMPACTS AND CHALLENGES IN PRACTICE

Sebnem Indap¹ and Prof. Dr. Mehmet Tanyas²

¹PhD. Student, Logistics and Supply Chain Management, Maltepe University, Istanbul, Turkey

²International Trade and Logistics Management Department, Istanbul, Turkey

DOI: http://dx.doi.org/10.38193/IJRCMS.2021.3511

ABSTRACT

Purpose: It's aimed to provide various suggestions for the implementation of Blockchain technology in supply chain management.

Methodology: Blockchain technology and its applications in different industries are examined with the method of literature review.

Findings: There are many industries where Blockchain technology can be applied. Although it's is expected to bring many benefits to traditional supply chains, it's difficult and expensive to implement.

Practical implications: To reduce barriers, governments should make more investments in research, education and training to prove and demonstrate the potential benefits.

Originality: This study is important in terms of contributing to the literature by examining the application areas in different sectors together with business effects and application difficulties and making suggestions for blockchain technology adoption.

KEYWORDS: Blockchain (BC), Blockchain Technology (BCT), Smart Contract, Supply Chain Management (SCM)

Jel Code: N7, O14, O32, O33

1. INTRODUCTION

Blockchain technology is a decentralized data storage method where transactions can be carried out securely without an intermediary or an authority, and where data cannot be deleted, changed or lost (Gerdan, 2019:4).

The first blockchain was conceptualized with the article titled "Bitcoin: End-to-End Electronic Cash System" published under the pseudonym Satoshi Nakamoto on October 30, 2008, and the production conditions of Bitcoin were determined with the initial block produced on January 3, 2009. Satoshi Nakamato proposed Bitcoin as a digital currency that has no physical copies. Bitcoin has been the first digital currency to solve the double spending problem, which can be used as a payment tool with Blockchain technology without the need for a central system and any intermediary (BCTR, 2019:8).

Vol. 3, No. 05 Sep-Oct; 2021

The first application of blockchain technology is Bitcoin, an end-to-end electronic cash system. With Bitcoin, electronic money is sent between two parties without a bank or any payment institution intermediary. Later, blockchain technology has evolved into smart contracts with the ability to provide transparency and trust in the system (Zhao et al., 2019:88).

Blockchain 1.0 can be referred to as the digital currency phase, which includes cryptocurrencies with applications such as money transfer and digital payment. Blockchain 2.0, on the other hand, covers a wide range of economic and financial applications beyond simple payments and money transfer transactions and can also be called the digital economy. Blockchain 3.0, also called digital society, covers the fields of science, art, health, education, communication, management and control (Tanriverdi et al., 2019:205).

The global blockchain market size is expected to increase from 3 billion USD in 2020 to 39.7 billion USD by 2025, with a growth rate of 67.3% in the period 2020-2025 (MarketsandMarkets, 2020).

This study is important in terms of contributing to the literature on the subject by examining the application areas in different sectors together with business effects and application difficulties in order to show that blockchain technology does not only consist of cryptocurrencies, and making suggestions for the adoption of blockchain technology.

In the second part of the study, the working mechanism and features of Blockchain technology were discussed. In the third part, the Literature Review was summarized, and the applications, effects and application difficulties of smart contracts and blockchain technology in different sectors were discussed. As a result, various suggestions have been made for the application of Blockchain Technology in supply chain management.

2. THEORETICAL BACKGROUND

2.1. Blockchain Working Mechanism and Features

A blockchain consists of a chain of cryptographically linked blocks containing aggregated transactions. Each transaction is made into a block shortly after it occurs. These blocks are mathematically chained together. Blocks are validated and managed by network nodes (computers or users participating in a blockchain network) via a shared management protocol. Each node contains a complete record of all transactions ever recorded in that blockchain. A single node cannot modify or delete a block. Nodes collectively agree on valid transactions to be included in blocks through a consensus mechanism (World Economic Forum, 2019:8).

Figure 1 illustrates the working mechanism of a blockchain system and the process from creating a

Vol. 3, No. 05 Sep-Oct; 2021

transaction to verify it and adding the transaction to the blockchain.

Figure 1. Blockchain Working Mechanism (Blasetti, 2017)

The key blockchain features are explained in Table 1.

	Table 1. Diversenant reatures	
Anonymity & Privacy	The blockchain uses a cryptographic private key that provides data	
	privacy and anonymity. Blockchain technology ensures data	
	security without compromising the privacy of stakeholders	
	(Kamble et al., 2019:3).	
Auditability	No special authorization is required to audit transactions on the	
	blockchain and it can be accessed by all participants such as	
	institutions, regulators and consumers (Kamble et al., 2019:4).	
	Depending on the technology and the use of cryptographic	
	techniques, it can often be designed what information is presented	
	to whom. This increases auditability, builds trust and reduces fraud	
	(World Economic Forum, 2019:9).	
Decentralization	In a traditional centralized transaction system, a central trusted	
	institution such as a bank must verify every transaction. This	
	process can cause cost and performance bottlenecks on central	
	servers. With Blockchain technology, transactions within the	
	blockchain network can be performed between two users without	

Table 1. Blockchain Features

ISSN 2582-2292

Vol. 3, No. 05 Sep-Oct; 2021

the need for authentication by a single central authority or		
intermediary (Olsen et al., 2019:9).		
The distributed trust mechanism means that the need for trust in a		
central authority is eliminated. Two peers can transact between		
each other without the need to trust a third party (Gerdan,		
2019:25).		
In the blockchain, records are stored in interconnected blocks. Any		
change to the historical records would break the entire blockchain		
structure. This means that historical data cannot be changed		
without warning other users and prevents human interference of		
the records (Zhang et al., 2019:3).		
The blockchain consensus algorithm can ensure data security.		
Users review transactions. When decentralization eliminates		
centralized power in the network, it also prevents disruption of a		
supply chain due to a single point of failure, it does not cause the		
entire network to fail, which can reduce the likelihood of hacking		
(Zhang et al., 2019:3).		
Exact copy of records at every node in the blockchain enables real-		
time inspection and review of data, providing transparency		
(Yılmaz, 2019:27).		

2.2. Smart Contracts

A smart contract is a computerized transaction protocol that automatically executes the terms of a contract on a blockchain after predefined conditions are met. Blockchains can be programmed to automate business processes, for example making payments (World Economic Forum, 2020:234). A smart contract is similar to a regular contract, but it is executed or enforced when certain conditions are met without the need for human interaction. Since the contract is automatically executed on the Blockchain, it removes the uncertainties between the parties when the conditions are met. It reduces costs by eliminating paperwork and third-party involvement. It eliminates the need for trust and the risk of loss between parties (Croxson et al., 2019:98–99).

The use of smart contracts can have legal consequences, particularly with regard to applicability. Paper systems were reported to cost \$18 trillion per year globally in 2014, and smart contracts offer significant opportunities to reduce costs and increase reliability (European Commission, 2020:160). More than 200 blockchain experts were asked about the factors affecting the use of smart contracts in the blockchain and the results in Figure 2 were obtained. In addition to providing integration across industries, ease of use, cost savings and efficiency advantages; providing legal certainty is seen as the most important factor affecting the use of smart contracts.

OIRCMS Texture Texture Texture Texture Texture Texture Texture Texture Texture

ISSN 2582-2292

Vol. 3, No. 05 Sep-Oct; 2021

Figure 2. Factors Affecting the Use of Smart Contracts on the Blockchain (European Commission, 2020:140)

Smart contracts can significantly reduce transaction costs and increase the efficiency and transparency of transactions. For example, grain exports have a complex network of intermediaries with many stakeholders including farmers, wholesalers and buyers, as well as shipping, warehousing, quality control, port, customs, financing, contracting and authentication services. At each stage of this value chain, products must be stored, processed and transported at special standards such as humidity and temperature. In the global value chain exemplified in Figure 3, transaction costs and paperwork can be reduced with Blockchain and smart contracts. Blockchain technology can reduce or eliminate the need for intermediaries along the value chain (FAO, 2020:114–15).

Figure 3. Blockchain Based Agri-Food Value Chain Example (FAO, 2020:116)

Vol. 3, No. 05 Sep-Oct; 2021

3. Methodology – Literature Review

Academic resources between 2010-2019 were reviewed with the keywords "Blockchain", "Blockchain Technology", "Smart Contract", and "Supply Chain Management" in Web of Science, Scopus, Science Direct, Google Scholar and YÖK National Thesis Center databases.

A total of 91 studies were accessed, first non-English or non-Turkish sources and then technicaloriented sources were excluded, and the summaries of 79 sources which were identified were reviewed in terms of their relevance to the scope of the study.

21 studies were selected to be examined in detail to ensure diversity in research topics and the examined sectors and sub-sectors. These studies, which are examined on Blockchain applications in different sectors, are shown in Table 2 along with research types and methods.

No	Author, Year	Research Type	Method	Sector		
	Amir Latif et al., 2019	Conference Paper	Conceptual Study	Retail		
	Title	Blockchain Transforms the Retail Level by Using a Supply Chain Rules and				
		Regulation				
1	Keywords	Blockchain (BC); Ethere	um; Hash; Loyalty; Retail; S	Smart Contract; Trusted-		
		Retail				
	Summary	How Blockchain technol	ogy (BCT) can be applied in	the retail sector, its		
		benefits and some impor	tant features are discussed.			
	Andoni et al., 2019	Article	Literature Review,	Energy		
			Use Case Analysis			
	Title	Blockchain technology in the energy sector: A systematic review of challenges				
		and opportunities				
2	Keywords	Blockchain; Distributed Ledger; Energy Decentralization; Peer-to-peer Energy				
		Trading; Prosumer; Renewable Energy				
	Summary	The basic principles of BCT are explained and the focus is on Blockchain				
		solutions for the energy	sector. Literature and current	t business cases were		
		reviewed. Opportunities and potential challenges are discussed.				
	Azzi et al., 2019	Article	Literature Review,	Supply Chain		
			Case Study			
	Title	The power of a blockchain-based supply chain				
3	Keywords	Blockchain; Supply Chain Management; Traceability Systems; Decentralized				
		Systems				
	Summary	This study explains how BC can be integrated into the supply chain				
		architecture to create a re	eliable, transparent, authentio	e and secure system.		

Table 2 Literature Review

ISSN 2582-2292

No	Author, Year	Research Type	Method	Sector		
		Through theoretical studies and real-world applications, the benefits of				
implementing Blockchain in the supply chain and the ch			ne challenges faced in			
		Blockchain-based supply	y chain management are exa	amined.		
	Bennett et al., 2019	Article	Literature Review	Land Management		
	Title	Transformations, transitions, or tall tales? A global review of the uptake and impact of NoSQL, blockchain, and big data analytics on the land administration sector				
4	Keywords	Cadastre; Distributed Databases; Land Registration; Land Administration; Unstructured Data				
	Summary	In this article, it is aimed to give an idea about the opportunities, challenges, impacts and future scenarios related to the application of emerging technologies by examining international cases in the land sector.				
	Biswas and Gupta, 2019	Article	DEMATEL, Barrier Analysis	Industry and Service		
	Title	Analysis of barriers to implement blockchain in industry and service sectors				
5	Keywords	Blockchains; Digital Ledger Technology; DEMATEL; Barrier analysis; Causal Relationship				
	Summary	Barriers to the adoption and successful implementation of BC in industry and				
		service sectors were investigated using the DEMATEL technique. Obstacles				
		identified with the help of existing literature and expert opinions were				
		have been identified as the most important barrier to BC adoption.				
	Casino et al., 2019	Article	Modeling	Food Supply Chain		
	Title	Modeling food supply cl	hain traceability based on bl	lockchain technology		
	Keywords	Applications; Blockchai	n; Classification			
~	Summary	The study aimed to develop a distributed functional model to provide decentralized and automated food supply chain traceability based on BCT and				
0		smart contracts. To evaluate the feasibility of the proposed modeling approach,				
		a food traceability use-scenario is presented. The applicability of the model is				
		explained by the develop	explained by the development of a fully functional smart contract and a local			
		custom BC. The overall benefits of the proposed model were evaluated based				
		on predefined key perfor	on predefined key performance indicators.			
	Croxson et al., 2019	Conference Paper	Questionnaire, Q-Method	Food Supply Chain		
7	Title	Making Sense of Blockchain in Food Supply-Chains				
	Keywords	Value Chain; Trust-less Platform; Q-Methodology; Precision Food Systems				

ISSN 2582-2292

No	Author, Year	Research Type	Method	Sector	
	Summary	Q-methodology was used to examine whether BCT could be the solution for accurate tracking and tracing of products in New Zealand agricultural industry. Empirical research has revealed 4 distinct groups in the industry with different BC perspectives and potential. The results showed that although industry experts believed the implementation of BC was inevitable and would solve current problems, factors such as high installation costs and complexity of technology could be barriers. Further research has been proposed on how to solve food safety problems with new technologies such as BC, IoT (internet of things) and AI (artificial intelligence).			
	Galvez et al., 2018	Article	Literature Review, Case Study	Food	
	Title	Future challenges on the	use of blockchain for food t	raceability analysis	
0	Keywords	Blockchain; Agricultura Authentication; Traceab	Blockchain; Agricultural & Farming Applications; Food Chain; Food Authentication; Traceability; Data Analysis and Management		
δ	Summary	One way to solve traceability issues and ensure transparency is to use BCT to store data in chemical analysis in chronological order so that it is impossible to manipulate later. The potential of BCT to provide traceability and authenticity in the food supply chain has been examined. Although achieving food traceability with BCT seems promising, the limits to consider are outlined.			
	Gerdan, 2019	Master Thesis	Modeling, Prototype & Interface Design	Food – Eggs	
	Title	Food Safety with Blockchain Technology and an Example Application for the Egg Industry			
0	Keywords	Blockchain Technology; Food safety; Food Traceability; Supply Chain; Egg Production; User Interface Design			
9	Summary	The innovations that BCT will bring to the food supply chain traceability and the advantages it offers have been researched and the benefits it will bring to food safety have been examined. An organic egg producer under the name of Ecological Egg Ltd. was designed to be examined. A digital platform using BCT called Blockchain Lab. was assumed and a food safety solution prototype was created for the egg producer and sample user interfaces were designed.			
	Hancock, 2019	Report Questionnaire Food - Beef			
10	Title Keywords	The Integration of Blockchain Technology to the Beef Industry-A Comparative Analysis Blockchain; Beef Industry; Cattle Industry; Supply Chain Optimization; Supply Chain Transparency; Meat Industry; Food Traceability; Ranching;			
	Summary	Agribusiness It is aimed to investigate USA and Kenya. Previou	Blockchain applications in us studies have not focused of	the beef industry in the on differences between	

ISSN 2582-2292

No	Author, Year	Research Type	Method	Sector		
		countries, this study aimed to address this gap.				
		The primary research method was applied as the main method, by interviewing				
		various stakeholders in t	he industry about supply cha	in issues and		
		opportunities.				
		It has been found that th	e integration of Blockchain i	nto the beef industry is		
		broadly advisable, but varies greatly depending on the developmental stage and				
		regulatory environment	of industries at different cour	ntries.		
	Kamble et al., 2019	Article	ISM, DEMATEL	Agriculture		
	Title	Modeling the blockchain enabled traceability in agriculture supply chain				
	Keywords	Blockchain Technology	; Agriculture; Supply Chain;	Sustainability;		
11		Traceability; Transparen	Traceability; Transparency; ISM; DEMATEL			
11	Summary	In this study, the relation	ships between the factors en	abling the adoption of		
		Blockchain Technology	in the agriculture supply cha	in were determined.		
		The findings show that a	The findings show that among the factors identified, traceability is the most			
		important reason for the implementation of Blockchain Technology in the				
		agriculture supply chain, followed by auditability and immutability.				
	Kamilaris et al., 2018	Report	Multiple Case Study	Agriculture- Food		
	Title	The Rise of the Blockchain Technology in Agriculture and Food Supply Chain				
	Keywords	Blockchain Technology; Agriculture; Food Supply Chain				
10	Summary	This article examines the impact of Blockchain Technology in the agriculture				
12		and food supply chain, p	presents current ongoing proj	ects and initiatives, and		
		discusses the general implications, challenges and the potential.				
		The findings show that blockchain is a promising technology for a transparent				
		food supply chain, but many barriers and challenges still exist that hinder its				
		wider popularity among	farmers and systems.			
	Kayıkçı and	Conference Paper	Literature Review,	Food-Milk		
	Subramanian, 2018		Modeling, Questionnaire			
	Title	Feasibility of Food Loss Reduction with Blockchain in the Emerging Economy				
		Context				
13	Summary	This article analyzes the	feasibility of reducing food	loss and the adaptation		
15		challenges of Blockchair	n Technology. To understan	d the barriers, a survey		
		was conducted for the Turkish dairy supply chain.				
		The results of the research show that barriers such as trust between businesses,				
		trust in technology, standards, consumer perception, legislation and regulation				
		are the key to reducing food loss in the supply chain.				
14	Kim et al., 2018	Conference Paper	System Design,	Food		
			Modeling			

ISSN 2582-2292

No	Author, Year	Research Type	Method	Sector	
	Title	Integrating Blockcha Traceability Solution	in, Smart Contract-Tokens, an	nd IoT to Design a Food	
	Keywords	Blockchain; Ethereum; Smart Contract; IoT; Food Traceability; GS1 Standards			
	Summary	The study introduces application "from far aim is to create a dist chain. A basic frame simulation using exis	Harvest Network, a theoretica rm to fork" integrating Blockel tributed ledger accessible to al work has been established to b sting technologies and protoco	al food traceability hain and IoT devices. The l stakeholders in the supply puild a prototype or ls.	
	Knezevic, 2018	Article	Scenario Analysis	Finance	
	Title	Impact of Blockchair and Other Industries	Impact of Blockchain Technology Platform in Changing the Financial Sector and Other Industries		
	Keywords	Blockchain; Bitcoin;	Criptovalutes; Scenario		
15	Summary	The purpose of the a platform on finance a scenario and trend ar the financial sector, i change them signific	rticle is to conduct research on and other industries via crypto- nalysis show that BCT currentl is in the early stages of changin antly in the next 5 to 10 years.	the impact of the BCT currency. The results of the ly has a profound impact on ng many sectors and will	
	Rozman et al., 2019	Conference Paper	Case Study, Conceptual Modeling	Supply Chain	
	Title	Distributed logistics platform based on Blockchain and IoT			
	Keywords	Blockchain; IoT; Supply Chain Management; Distributed Network; Logistics			
16	Summary	This article presents supply chains. The n concept allows users technology. BCT is u as a reliable public li	an approach to integrating BC nodular nature of the proposed to add their own nodes. Node used not only for writing and the sting of services and informati	T and IoT into modern new logistics platform s communicate with IoT ransacting contracts, but also ion.	
	Tönnissen and Teuteberg, 2019	Article	Case-Literature Review, Conceptual Modeling	Supply Chain	
	Title	Analysing the impac chain management: A	t of blockchain-technology for An explanatory model drawn f	operations and supply rom multiple case studies	
17	Keywords	Disintermediation; S	upply Chain; Blockchain; Exp	lanatory Model; Case Study	
	Summary	In this article, multiple-case analysis is used to develop an explanatory model for the interaction of actors in a supply chain that includes BCT. The intermediaries blockchain can replace and its impact are explained.			
18	Yiannas, 2018	Article	Case Study, Conceptual Evidence Study	Food - Mango & Pork	
	Title	A New Era of Food Transparency Powered by Blockchain			

ISSN 2582-2292

No	Author, Year	Research Type	Method	Sector		
	Summary	Walmart and IBM prese	nted 2 PoCs to demonstrate t	hat Blockchain		
Technology offers a convenient way to track and verify fo			ify food from farm to store			
		quickly and precisely. Po	oCs are focused on the tracea	ability and authenticity		
		element of the Blockcha	in solution. The time taken t	o view mangoes with		
		Blockchain Technology	decreased from 7 days to 2.2	2 seconds.		
	Yılmaz, 2019	Master Thesis	Modeling	Food Supply Chain		
	Title	Designing a Blockchain	system that will track the de	livery of products from		
		the supplier to the consu	mer			
19	Keywords	Blockchain; Bitcoin; No	nce; Smart Contract; Supply	Chain Management		
	Summary	To solve the difficulties	experienced in food supply of	chain management, a		
		proposal has been made	regarding the use of Blockel	nain Technology.		
		Information about Ether	eum technology and smart co	ontracts and an example of		
	7hana at al 2010	a working Blockchain is	presented.	East		
	Znang et al., 2019	Conference Paper	Literature Review	F000		
	Title	A content based literatur	e review on the application (of blockchain in food		
	Vouwonda	supply chain management				
	Keywords	Blockchain; Food Supply Chain				
	Summary	I he aim of the study is to explore now Blockchain is used in the field of food				
20		In order to answer the following research questions, an in-depth analysis of the				
20		literature was conducted	to fill in the gaps.	an m-deput analysis of the		
		1) What are the research	es on the application of Bloc	kchain in food supply		
		chain management?	es on the uppreation of Bioe	kenum m tood suppry		
		2) What benefits can Blo	ockchain bring to the food su	pply chain?		
		3) What are the challeng	ain in the food supply			
		chain?				
	Zhao et al., 2019	Article	Systematic Literature	Agriculture-Food		
			Network Analysis			
	Title	Blockchain technology in agri-food value chain management: A synthesis of				
		applications, challenges and future research directions				
	Keywords	Blockchain Technology;	Agri-food Value Chain Dig	itisation; Industry 4.0;		
		IoT; Systematic Literature Network Analysis (SLNA)				
21	Summary	SLNA was used to revie	w Blockchain Technology, i	ncluding key applications		
21		and challenges in the ag	ri-food value chain.			
		Blockchain Technology	along with IoT, has been sho	own to improve agri-food		
		value chain management in 4 main aspects: traceability, information security,				
		production and sustainab	ble water management.			
		6 challenges were identified, including high cost, storage capacity and				
		scalability, privacy leaka	ige, regulation issue, through	put & latency issue and		
		lack of skills.				

Vol. 3, No. 05 Sep-Oct; 2021

4. FINDINGS

4.1. Applications of Blockchain Technology in Different Industries

Blockchain technology is not just about Bitcoin and other cryptocurrencies. There are many industries that can benefit from the application of blockchain technology, especially with the use of smart contracts. The most important ones are exemplified in Table 3.

Agriculture & Food	Blockchain technology provides improvements in food safety programs by
	allowing the source of a product to be identified quickly, tracing the cause of
	a foodborne illness back to its source before it becomes a widespread
	problem. American retail company Walmart and technology firm IBM
	demonstrated the power of the system in 2017, using the example of mango
	and pork. While the traceability of shipping documents and invoices for these
	products in existing systems can take up to a week, with the use of
	Blockchain technology the entire supply chain was traceable in a matter of
	seconds. In addition, food waste can be reduced by monitoring the shelf life
	of food in more detail during the transport and storage process (Yiannas,
	2018).
Education	As web-based distance learning becomes more common, so does the need
	for an independent and transparent way to verify students' educational
	records and transcripts. A blockchain-based platform can act as a notary for
	educational records, providing educational institutions and employers with
	secure access to transcripts and records, and employers the data needed to
	determine whether the resumes of the candidates are correct (Alladi et al.,
	2019:176947).
Energy	In the energy sector, automatic billing can be done with Blockchain, smart
	contract and smart metering systems. Together with artificial intelligence
	techniques such as machine learning, blockchain can identify consumer
	energy patterns. In network applications, blockchain smart devices can be
	used for communication, data transfer or storage. Smart contracts can
	simplify and speed up switching energy suppliers. Increased market mobility
	can increase competition and potentially lower energy tariffs. Immutable
	records and transparent processes can significantly improve auditing and
	compliance (Andoni et al., 2019:151–52).
Finance-Global	Global money transfers are both costly and time consuming due to different
Payment Systems	intermediaries. In addition, there may be problems in compliance control and
	reporting. A new blockchain and smart contract-based process can reduce the
	number of intermediaries, enabling the payments to be made in real time and

Table 3. Applications of Blockchain Technology in Different Industries

ISSN 2582-2292

Vol. 3, No. 05 Sep-Oct; 2021

blockchain (Usta and Doğantekin, 2018:55).	
Health & Blockchain capabilities can be used to ensure the confidentiality	of
Pharmaceutical healthcare data and patient privacy to conduct research using patient da	ta
ndustry without violating confidentiality, and to increase the security of drug supp	y
chains against counterfeit drugs, which is a growing threat, especially wi	h
the increase in online drug sales. Pharmaceutical supply chain an	d
pharmaceutical companies can track and verify the movement of each dru	g
using blockchain. By recording every exchange of a drug, blockchain c	n
help companies identify defective products before they reach consume	rs
(European Commission, 2020:171).	
Public Sector Blockchain and smart contracts can automate processes and impro	'e
information sharing in the public sector. Potential uses: Birth and marria	ge
certificates, death records, digital identities such as visas and passport	s;
personal records such as health and insurance; title records, including deta	ls
of real estate and property transactions, and historical records; benefits an	d
rights, such as social security, medical benefits; local and internation	al
donations; automatic payments via smart contracts; accurate counting an	d
control with digital voting; can be summarized as facilitating inter-	r-
institutional processes (OECD, 2018:19).	
Retail Blockchain-based smart loyalty programs detect, store and valida	te
consumer behavior for more personalized targeting, encouraging behavi	or
and rewarding loyalty using smart contract logic, resulting in high	er
customer satisfaction and revenue growth in the retail industry (Amir La	if
et al., 2019:269). Consumer surveys and research can also be conducted	d
securely using blockchain. Blockchain can be used to tag products so t	le
legal owner can be instantly where the product is if it is stolen or lo	st
(Deloitte, 2018:11).	
Supply Chain When the supply chain is tracked with BCT, the handover of a product fro	n
Management manufacture to sale between suppliers, manufacturers, retailers and	d
consumers can be documented, creating a permanent product history. In th	is
way, it may be possible to significantly reduce time delays, additional cos	ts
and human errors that currently hinder operations. By using smart contrac	s,
automated control and financial flows can be realized during the moveme	nt
of a product on the chain. Customers can also have reliable information abo	ut
the arrival process of the product they bought (Usta and Doğantek	n,
2018:61).	

4.2. Impacts of Blockchain Technology

Numerous case studies have been conducted to understand the impact of BCT on key supply chain

Vol. 3, No. 05 Sep-Oct; 2021

objectives such as cost, quality, transparency, trust, risk reduction, sustainability and flexibility. Blockchain provides many benefits for different stakeholders in the supply chain. The impacts of BCT especially in supply chain management is summarized in Table 4:

Table 4. Impacts of Diockchain Technology		
	Functional Impacts	
Transparency and	BC can show real-time product updates. Where the product is, who produced it,	
auditability	how it was produced and the scheduled delivery time can be seen. As each	
	transaction is recorded sequentially in the BC, a permanent audit trail is provided	
	that can verify the authenticity of the product and be traced through the chain of	
	custody (Accenture, 2018:7–8).	
Efficiency	Efficiency gains can be achieved in reducing manual processes and duplications	
	for data validation and reconciliation between parties (Accenture, 2018:5).	
Improved data	Smarter and more accessible data and market insights are provided by immutable	
quality	product-process connections (Lezoche et al., 2020:6).	
Product	With the globalization of trade, supply chains are becoming more and more	
traceability	complex and it is becoming increasingly difficult to trace products. BC provides	
	end-to-end traceability in the supply chain. All members of the chain agree on	
	every transaction, once consensus is reached, the permanent record cannot be	
	changed (Galvez et al., 2018:223–26).	
	Economic Impacts	
Finance	Small and medium-sized producers often face problems when they need credit,	
	due to lack of trust and knowledge. Blockchain can help supply chain stakeholders	
	access insurance and financing resources by providing a much higher level of	
	certainty about data (Accenture, 2018:9–10).	
Cost savings and	Savings can be achieved through transparency and certainty of product	
revenue growth	movements, finance and credit facilities, and streamlined operations. Decreased	
	transaction costs, elimination of information differences between stakeholders, ,	
	fairer pricing, new product and market development can be achieved.	
Contract	BC can share data such as inventory more efficiently, making it easier for a	
management	company to manage different suppliers and contracts. Shared inventory and	
	automated purchase orders on the BC can accelerate product movements	
	throughout the supply chain, reduce the risks of product spoilage, and meet	
	consumer demands more efficiently (Accenture, 2018:9). Contract execution and	
	slow payments can lead to unnecessary waiting and penalties throughout the	
	supply chain. Smart contracts or cryptocurrency-based transactions can save time	
	and resources (Hancock, 2019:29).	
	Business Impacts	
Marketing tool	Since BC is completely transparent and participants can control the products	
	inside, they can be used to improve the image and reputation of institutions, stand	

Table 4. Impacts of Blockchain Technology

ISSN 2582-2292

Vol. 3, No. 05 Sep-Oct; 2021

	out from the competition, increase loyalty among existing customers and attract
	new ones (Galvez et al., 2018:226).
New business	BC can automate purchasing by changing the functions of intermediaries in global
models and	trade. Just as e-commerce is an alternative to physical stores. BC can enable
sustainable	manufacturers to reach consumers directly. Transparent, real-time data on product
product	movements can create a collaborative approach to global trade, reduce costs and
differentiation	increase efficiency (Accenture, 2018:9–10).
	Technological Impacts
Streamlined	Applications on the BC platform can streamline processes by moving data to the
operations	BC through human input or an automated process or technology, for example an
	automated sensor that measures the temperature in a transport truck (Accenture,
	2018:8).
Operations without	Smart contracts can validate the terms of a contract between counterparties
intermediaries	without the need for a human as an intermediary. With users' confidence that
	transactions will be executed exactly according to contract terms, the need for a
	trusted third party can be eliminated.
	Environmental and Social Impacts
Waste reduction	Waste reduction can be achieved with improved traceability.
Reduction of	Risks arising from counterfeit products and low-quality components can be
stakeholder risk	reduced.
Brand image	Quickly identifying the source of a food contamination can help protect a
	company's brand image and mitigate the negative impact of criticism from the
	media (Galvez et al., 2018:226).
Customer	Ensuring product safety and quality can increase customer satisfaction.
satisfaction	

4.3. Challenges of Implementing Blockchain Technology

While blockchain technology is expected to bring many benefits to traditional supply chains as it continues to evolve, there are organizational, technological, legal, environmental and social challenges that must be addressed before the technology reaches maturity to ensure its scalability and accessibility (FAO, 2018:21). As blockchain technology is quite difficult and expensive to implement, these challenges outlined in Table 5 pose a significant threat to the implementation of BCT.

Table 5. Challenges of Implementing Blockchain Technology

Organizational Challenges		
The difficulty of	Sufficient number of manufacturers and supply chain stakeholders must be	
bringing the entire	included in the system for effective use of the blockchain system (Hancock,	
supply chain	2019:10). Engagement challenges may arise due to lack of technical competence	
together	and awareness of BCT, successful organizations not wanting to change their	

ISSN 2582-2292

	current revenue models, resistance from supply chain intermediaries, and	
	resistance of existing supply chain stakeholders to share valuable data in real-	
	time in a decentralized and shared database.	
Cultural adoption	BCT requires transparency of information, which will require stakeholders to	
	adopt a new social governance model (Kim et al., 2018:339). In particular, small	
	SMEs (small-to medium enterprises) may experience the problem of not adopting	
	technology (Kamilaris et al., 2018:12).	
Distrust between	The size of the chain, as well as its homogeneity fosters trust between	
organizations	organizations. If the chain has a major partner and its rules are followed, this can	
	cause trust problems between organizations (Kayıkçı and Subramanian,	
	2018:259).	
High Cost of	Cost savings have been the most important factor in companies' adoption of new	
Implementation	technologies. BCT currently requires high capital costs, as the Proof of Work	
	algorithm used by most Blockchains requires significant computing power for	
	their transactions (Kayıkçı and Subramanian, 2018:260).	
	Legal Challenges	
Lack of Legislation	Changing the standards and applying a completely new system requires legal	
and Regulation	regulations to be made (Kayıkçı and Subramanian, 2018:258).	
Uncertain	There is a need to comply with laws and regulations, it is also risky that new laws	
regulation	and regulations may impose restrictions on the blockchain.	
	Environmental Challenges	
Large energy	Running the Bitcoin software can use almost as much power as the entire country	
consumption	of Denmark in terms of electricity consumption. As blockchain is expected to	
	gain more and more popularity, its maintenance poses a major environmental	
	challenge (European Commission, 2020:33).	
Technological Challenges		
Infrastructure and	It can only be implemented as long as there is an internet connection, which may	
capacity	be a problem in developing countries (Lezoche et al., 2020:6).	
Interoperability	Blockchain alone is not enough, it needs to be used and integrated with other	
	digital technologies such as EDI, RFID, NFC tags, wireless sensor networks,	
	ERP, data warehouses or IoT (Kayıkçı and Subramanian, 2018:258).	
The need for	For the transition to a blockchain-based system, organizations may need to	
significant changes	integrate their existing systems with blockchain or completely replace their old	
to existing systems	systems (European Commission, 2020:38).	
Absence of	The necessary standards and regulatory protocols for data transfer and security	
Standards	issue are not yet fully available (Kayıkçı and Subramanian, 2018:258).	
Transaction	One of the main technical challenges with blockchain is the question of how	
capacity-scalability	many transactions per second it can handle (European Commission, 2020:30).	
issue		

ISSN 2582-2292

Vol. 3, No. 05 Sep-Oct; 2021

Consensus	In a public blockchain, the consensus rule creates the problem of low transaction	
Problem	volume and block generation rate. Currently, the latency for updates is of 15	
	seconds on average for a new block to be written to the Ethereum blockchain.	
	The latency is proportional to the amount of traffic on the blockchain; potential	
	bottlenecks can result in increased economic costs of mining operations.	
	Although scaling solutions have been launched to increase transaction speed -	
	there is no precise estimate of when public Blockchains can process thousands of	
	transactions per second like OLTP systems (Kim et al., 2018, s. 339).	
Social Challenges		
Lack of necessary	Smart contract engineering, solutions architecture, cryptography and distributed	
technical skills and	network engineering are the most needed technical skills. Crypto economics, law	
expertise	and business development are the most needed non-technical skills. BC-specific	
	and multidisciplinary profiles are hard-to-find and most valuable expertise in the	
	market (EU Blockchain Observatory and Forum, 2020:71).	
Limited education	In addition to the general lack of awareness about BC, educational platforms are	
and training	not yet widespread. For blockchain adoption, it must first be understood	
platforms	(Kamilaris et al., 2018:10). For this reason, education and training platforms	
	should be expanded.	
Difference in	There is a difference in understanding between policy makers and technical	
understanding	experts on how ICT and transactions should be used (Kamilaris et al., 2018:10).	
The digital divide	The most obvious limitation of BC is that access to a device with internet access	
	is required to add or view data in a BC (Hancock, 2019:9)	
Error in data entry	In BC, records are immutable, but there is still a risk of data being skipped or	
	incorrect data entered, either intentionally or unintentionally. Even when false	
	data is added to the chain, BC provides an advantage over traditional supply chain	
	methods by providing a clearer, faster way to track and identify parties	
	responsible for false data (Hancock, 2019:10).	
Low technology	The higher the technology adoption rate for new technologies, the higher the	
adoption rate	acceptance and implementation (Kayıkçı and Subramanian, 2018: 260).	

5. CONCLUSION

Blockchain, which is expected to change business models and ways of doing business, is being researched by different sectors and companies. There are many sectors that can benefit from the advantages of BCT, some of them are Education, Energy, Public, Finance, Health-Pharmaceutical and Agri-Food sectors.

With the use of BCT, providing coordination and cooperation between stakeholders, data integration and product traceability, especially global and complex supply chain the supply chain can be improved. Full traceability of data in the BC is ensured, with the distributed structure of the technology and high security, it can be ensured that the data is not changed, automation is provided with smart

Vol. 3, No. 05 Sep-Oct; 2021

contracts, speed and efficiency increases, bureaucracy is simplified, intermediaries can be eliminated, and costs can be reduced.

While BCT continues to evolve, it is expected to bring many benefits to traditional supply chains such as transparency, auditability, efficiency, product traceability, security and customer satisfaction. However, in order to ensure the scalability and accessibility of technology, there are organizational, technological, legal, environmental and social challenges that must be addressed before it reaches maturity. These challenges pose a significant threat to the implementation of BCT, as it is quite difficult and expensive. To reduce barriers to use, more investment should be made by governments in research and innovation, education and training to produce and demonstrate evidence of the potential benefits of BCT. One of the biggest obstacles to the adoption of BCT is legal uncertainty, and the uncertainty should be eliminated by making regulations.

When at the applications in Turkey are examined, Blockchain Turkey Platform – Manufacture, Logistics and Transportation Working Group's Blockchain-based "Supplier Recognition Platform" solution, it is aimed for customers and suppliers to find each other easily, to prepare and verify the necessary information and documents quickly, to increase efficiency, and to prevent mistakes caused by forgery or errors. The stakeholders of the system to be created will be public institutions, financial service providers, unions, chambers and associations, private companies, SMEs, banks, logistics companies, information technology providers and investors.

Distributed agri-food supply chains, which include many stakeholders such as farmers, transport companies, distributors and retailers, are also sectors that can benefit from BCT. In the agri-food supply chain, BC provides transparency, allowing consumers to obtain reliable information about the source of the goods, and epidemics can be prevented by quickly tracking contaminated food in risky situations. In Turkish food retail sector, Migros has decided to use BCT to ensure supply chain security, transparency and the traceability of fruit and vegetable products from farm to store.

The contribution of this study to the literature is to provide a review of BCT in the time period of 2010-2019. First of all, academic and sectoral resources were examined and basic information about blockchain technology and smart contracts was presented. Then, in order to show that BCT does not consist only of cryptocurrencies, its application areas in different sectors, business impacts and implementation challenges are examined and suggestions are made for the adoption of blockchain technology. In this study, the focused sectors were restricted to Education, Energy, Public, Finance, Health-Pharmaceutical and Agri-Food. Applications in different industries can be studied and real applications can be further explored to gain in-depth knowledge of the application and benefits of BCT. In future studies, the application of BC in the agricultural sector, which is of great importance with its share in employment in Turkey, can be examined. BCT can be researched as a transparency,

ISSN 2582-2292

Vol. 3, No. 05 Sep-Oct; 2021

traceability and food safety solution in supply chain management and especially in agri-food supply chains, and a proposal for a blockchain supported conceptual reference process model that can be applied in agriculture-food supply chains in Turkey can be developed.

REFERENCES

Accenture (2018), "Tracing the Supply Chain: How Blockchain Can Enable Traceability in the Food industry".

Alladi, T., Chamola, V., Parizi, R. M. and Choo, K. R. (2019), "Blockchain Applications for Industry 4.0 and Industrial IoT: A Review", IEEE Access, 7, 176935–51.

Amir Latif, R. M., Shah, S. U. A., Iqbal, S., Farhan, M., Rizwan O., and Ijaz, F. (2019), "Blockchain Transforms the Retail Level by Using a Supply chain Rules and Regulation", 2019 2nd International Conference on Communication, Computing and Digital Systems, C-CODE 2019, 264–69, Islamabad: IEEE.

Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., Mccallum, P., and Peacock, A. (2019), "Blockchain technology in the energy sector: A systematic review of challenges and opportunities", Renewable and Sustainable Energy Reviews, 100:143–74.

Azzi, R., Chamoun, R. K., and Sokhn, M. (2019), "The power of a blockchain-based supply chain", Computers and Industrial Engineering, 135:582–92.

BCTR (2019), "Blokzinciri Teknolojisi Terminoloji Çalışması- Hukuk, Düzenlemeler ve Kamu İlişkileri Çalışma Grubu".

Bennett, R. M., Pickering, M., and Sargent, J. (2019), "Transformations, transitions, or tall tales? A global review of the uptake and impact of NoSQL, blockchain, and big data analytics on the land administration sector", Land Use Policy, 83:435–48.

Biswas, B. and Gupta, R. (2019), "Analysis of barriers to implement blockchain in industry and service sectors", Computers and Industrial Engineering, 136(July):225–41.

Blasetti, R. (2017). "Blockchain For Business, Should You Care?" https://blockgeeks.com/blockchain-for-business/, (Access: 24.10.2020).

Casino, F., Kanakaris, V., Dasaklis, T. K., Moschuris, S., and Rachaniotis, N.P. (2019), Modeling food supply chain traceability based on blockchain technology", IFAC-PapersOnLine, 52(13):2728–33.

Croxson, A., Sharma, R. S., and Wingreen, S. (2019), "Making Sense of Blockchain in Food Supply-Chains. Australasian Conference on Information Systems", 97–107, Perth Western Australia.

Deloitte (2018), "New Tech on the Block: Planning for Blockchain in the Retail and Consumer Packaged Goods industries".

European Commission (2020), "Study on Blockchains: Legal, Governance and Interoperability Aspects", European Commission.

EU Blockchain Observatory and Forum (2020), "2018-2020 Conclusions and Reflections".

FAO (2018), "Emerging Opportunities for the Application of Blockchain in the Agri-food Industry", Rome and Geneva.

Vol. 3, No. 05 Sep-Oct; 2021

FAO (2020), "The State of Agricultural Commodity Markets. Agricultural Markets and Sustainable Development: Global Value Chains, Smallholder Farmers and Digital Innovations", Rome.

Galvez, J. F., Mejuto, J. C. and Simal-Gandara, J. (2018), "Future challenges on the use of blockchain for food traceability analysis", Trends in Analytical Chemistry, 107:222–32.

Gerdan, G. (2019), "Blokzincir Teknolojisiyle Gıda Güvenliği ve Yumurta Sektörü İçin Örnek Bir Uygulama", Yüksek Lisans Tezi, Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

Hancock, C. N. (2019), "The Integration of Blockchain Technology to the Beef Industry-A Comparative Analysis".

Kamble, S. S., Gunasekaran, A., and Sharma, R. (2019), Modeling the blockchain enabled traceability in agriculture supply chain", International Journal of Information Management, 1–16.

Kamilaris, A., Fonts, A. and Prenafeta-Boldú, F.X. (2018), "The Rise of the Blockchain Technology in Agriculture and Food Supply Chain", Barcelona.

Kayıkçı, Y. and Subramanian, N. (2018), "Feasibility of Food Loss Reduction with Blockchain in the Emerging Economy Context", 23rd International Symposium on Logistics (ISL 2018) - Big Data Enabled Supply Chain Innovations, 255–62.

Kim, M., Hilton, B., Zach Burks, and Jordan Reyes. (2018), "Integrating Blockchain, Smart Contract-Tokens, and IoT to Design a Food Traceability Solution", 2018 IEEE 9th Annual Information Technology, Electronics & Mobile Communication Conference, 2018, 335–40, Vancouver: IEEE.

Knezevic, D. (2018), "Impact of Blockchain Technology Platform in Changing the Financial Sector and Other Industries", Montenegrin Journal of Economics, 14(1):109–20.

Lezoche, M., Hernandez, J. E., Diaz, M. Panetto, H., and Kacprzyk, J. (2020), "Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture", Computers in Industry, 117. Marketsandmarkets. (2020), "Blockchain Market Size, Growth, Trends and Forecast to 2025", https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html, (Access: 11.10.2020).

McKinsey. 2018, "Blockchain beyond the hype: What is the strategic business value?" https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-beyond-

the-hype-what-is-the-strategic-business-value, (Access: 11.10.2020).

OECD. (2018), "Blockchain and its Use in the Public Sector".

Olsen, P., Borit, M. and Syed, S. (2019), "Applications, limitations, costs, and benefits related to the use of blockchain technology in the food industry".

PwC(2018),"GlobalBlockchainSurvey",https://www.pwc.com/gx/en/industries/technology/blockchain/blockchain-in-business.html, (Access:06.10.2020).

Tanrıverdi, M., Uysal, M. and Üstündağ, M. T. (2019), "Blokzinciri Teknolojisi Nedir ? Ne Değildir ?: Alanyazın İncelemesi", Bilişim Teknolojileri Dergisi, 12(3):203–17.

Usta, A. and Doğantekin, S. (2018), "Blockchain 101 v2", BKM.

World Economic Forum. (2019), "Inclusive Deployment of Blockchain for Supply Chains: Part 1-

Vol. 3, No. 05 Sep-Oct; 2021

Introduction".

World Economic Forum. (2020), "Redesigning Trust: Blockchain Deployment Toolkit - Supply Chain Focus".

Yiannas, F. (2018), "A New Era of Food Transparency Powered by Blockchain. Innovations: Technology, Governance, Globalization", 12(1–2):46–56.

Yılmaz, R. (2019), "Ürünlerin Tedarikçiden Tüketiciye Ulaşmasını Takip Edecek bir Blok Zinciri Sisteminin Tasarlanması", Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

Zhang, C., Gong, Y. Brown, S. and Li, Z. (2019), "A content-based literature review on the application of blockchain in food supply chain management", The 26th EurOMA Conference, Helsinki.

Zhao, G., Liu, S. Lopez, C., Lu, H., Elgueta, S., Chen, H., and Boshkoska, B. M. (2019), Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions", Computers in Industry, 109:83–99.